Slides for the Presentation at
The John H. Glenn Research Center
at
Lewis Field

November 2004
Technical Narrative

Dr. William Henry Jones
November 2, 2004

The following pages provide a technical narrative that more fully elabo-
rates upon the associated slide set.



1 Slide pst_vgrf_ 0130 — Project Integration
Architecture

This presentation will give a brief overview of the Project Integration Archi-
tecture (PIA) effort being conducted at the National Aeronautics and Space
Administration’s John H. Glenn Research at Lewis Field in Cleveland, Ohio.

Project management responsibilities for PIA have been exercised by var-
ious individuals over the passing years. The current designated project man-
ager for PIA is Ms. Theresa Benyo; however, Ms. Benyo has been detailed
over much of the past year as the project lead for the Glenn-lead Inventing
Flight celebration of the centenial of flight. During Ms. Benyo’s absense the
Chief of the Engine Systems Technology Branch, Mr. Richard Blech, has
been performing the project management role for PIA.

Dr. William Jones is, and has been since its inseption, the Technical Lead
for the PIA effort. A precursor effort, the Integrated CFD and Experiments
(ICE) effort, was lead by Mr. Dale Arpasi. Some small number of other
personnel have assisted in the PIA technical effort; however, without excep-
tion all have moved on to better-compensated positions both at the Glenn
Research Center and elsewhere.

Finally, active efforts at commercialization and actual application of PTA
technology have recently been made by Battelle Memorial Research Insti-
tute (through a commercialization activities contract with NASA-Glenn),
Entara Technologies Group, LLC, (through a Software Use Agreement and
a pending Space Act Agreement), and C. Harnett Teska (through a Software
Use Agreement). C. Harnet Teska was recently admitted to the Center for
Advanced Technology and Innovation in Racine, Wisconsin, as one of only
six incubator projects now supported by that government /private/university
consortium.



2 Slide pst_vgrf_ 0112 — PIA: The Oversimpli-
fied Nutshell

PIA is an effort of considerable scope; thus, the reduction of its intent to
a single, short statement is likely to lead to more mis-understanding than
clarification. Nevertheless, some such nutshell explanation seems generally
inevitable. Thus,

Project Integration Architecture (PIA) is a distributed, object-
oriented, architectural framework that provides (in a machine-
intelligible manner) for the generation, organization, publication,
integration, and consumption of all information involved in any
process.

Putting this another way, the intent of PIA is to organize all of the infor-
mation generated and stored on computers. Furthermore, the intent of PIA
is to make this information intelligible not simply to people browsing away
through some portal, but to other computers so that applications can be
meaningfully linked together to form super-applications, applications search-
ing for some meaningful starting point or touch-stone can, themselves browse
through such inforation seeking what they need, and so on. Finally, it is the
intent of PIA to generate auditable records of what went on, where infor-
mation came from, and the like so that, when all the dust settles, one can
actually know by what process an answer was developed.

Making PTA an even more interesting project to understand, there is very
little restriction on the sort of information and process that PIA can accom-
modate. The basic PTA model is that information may or may not be put
into the computer, something may or may not be done to that information
by the computer to add to the value of that information, and information
may or may not come out of the computer. There is no further restriction
to the PIA model: there is no specification that PIA deals with analysis or
design application, no specification that databases of information are served,
no restriction to aerospace applications or automotive applications or phar-
macological applications, nothing more. Simply data might go in, something
might happen to it, and something might come out.

To conclude the confusion, one must understand that, in and of itself, PTA
does nothing. It is a framework, a methodology, but not an actual application
itself. It is somewhat like the Dewey Decimal System for indexing libraries:



just sitting there, the Dewey Decimal System is without value; it is only
when a librarian actually uses it to index the books of a library that the
Dewey Decimal System take on utility. If it just so with PIA: it is only
when developers wrap their information sources and sinks in PIA compliant
technology that PIA does something useful.



3 Slide pst_vgrf_ 0093 — Key Object-Oriented
Technologies Exploited by PTA

In order to accommodate the extremely laid-back expectations of the PIA
information /process model, two key object-oriented technologies have been
exploited to an extent perhaps beyond any previous effort: the technology of
self-revelation and the technology of semantic infusion through class deriva-
tion.

The first technology, that of self-revelation, is the ability to inquire of
an object as to its nature; that is, for an object to reveal its nature to its
consumer rather than require its consumer to fore-know the nature of the
object.

The natural analog of this technology of self-revelation is experienced by
a person every time he or she meets someone new. Other than the very
general expectation that the new person is a human being, fore-knowledge
of new acquaintances is generally very small. It is through self-revelation
that we begin to know another. We inquire, we ask questions: what do you
do for a living, are you married, do you own a home, so on and so forth.
The answers guide our further interactions; a person who turns our to be a
medical doctor guides us into our current need to inquire about some pending
medical condition and perhaps obtain an appropriate referral.

Self-revelation allows programs to be built in much the same way. Instead
of being programmed with a rigid expectation that needed information must
be found in exactly a particular place and in exactly a particular way, pro-
grams may be built with flexibile scenarios willing to respond to information
in the way and place it is encountered. Clearly, programming for this added
flexibility is an added burden, but it is also an added advantage. Programs
do not break because another program providing a needed nugget of infor-
mation is removed and a third providing that information is swapped in as
a substitute, nor need they break because in one situation B follows A while
in another A follows B.

Self-revelation is considered in two slightly different forms: a self-revelation
of kind and a self-revelation of content. Self-revelation of kind addresses just
that: of what kind is a particular object. This question and answer sets the
expectations about the nature and content of the revealing object. It is as
with a person answering “I am a medical doctor”: it sets your expectations
as to the kind of skills and abilities that you will find in the person.



The complimentary aspect of this self-revelation is then the self-revelation
of content: to what extent are expectations, in fact, fulfilled. You are a
thorasic surgeon: how many years of experience do you have, how many
operations have you performed? If this doctor has done 1,000 heart valves,
perhaps this is the doctor for you; if he just entered residency, probably not.
Similarly, a code looking for a flow-field solution to compare its results to can
inquire as to the validity of a found solution, can compare the geometries
of the two solutions, and the like to determine whether or not this is an
appropriate point of comparison.

The other technology necessary for self-revelation to be meaningful is that
of semantic infusion through class derivation. This is the technology by which
the nature of an object is refined by deriving it from a more general object.
As the successive layers of derivation are built up, the nature of the object
becomes more and more specific, and as a consequence the self-revelation
of kind becomes more useful and specific. Continuing the analogy with a
person, you find out first that the person is a working professional, that the
person is a doctor, then a medical doctor, then a cardiologist, and so on. As
each new layer is added, what you may then infer becomes more specific and
more valuable in determining whether this person is the person that fits your
needs.



4 Slide pst_vgrf 0132 — Semantic Infusion Through
Class Derivation

This graphic provides a specific example of the technology of semantic infu-
sion through class/interface derivation by illustrating the heritage of a spe-
cific parameter interface developed for the the CORBA-served version of PIA.
This interface starts from the patriarch of the CORBA interface system, the
CORBA::Object interface, and is progressively derived and defined un-
til, at last, it is specifically a parameter of the LAPIN application wrapper
encapsulating a 1-dimensional grid of corrected massflow results.
Each layer of derivation contributes to the whole as follows.

1. CORBA::Object: Instances of 1l interfaces served by CORBA must
be derivatives of this foundational interface.

2. GObject: This is the patriarch of the entire PIA interface hierarchy.
As such, it does very little except declare that it is an instance that is
willing to reveal its nature (self-revelation) in various ways.

3. GObjSta: This layer simply adds some boolean characteristics to an
instance; that is, it adds things that may be either true or false about
a particular instance.

4. GObjLck: This layer adds the ability to lock access to each particular
instance, thus providing protection against possible information cor-
ruption through uncontrolled, concurrent access by multiple accessors.
Traditional multi-reader, single-writer controls are provided through
Release, Reference, Read, Write, Execute, and Delete lock lev-
els.

5. GObjDgn: This layer adds to the instance the ability to participate
in a directed graph. A directed graph is a very general and, often, very
useful structural form that allows relationships between instances to be
recorded.

6. GacBObj: At this point, the instance is declared to be a functioning
part of an application, although just exactly which part and which
application (if any) is still unspecified. In PIA the most useful thing
that being a part of an application brings with it is the ability to be



described by a very flexible descriptive system, that being a form of
self-revelation of content. Another thing that comes with being a part
of an application is the ability to search upwards through the defined
structure of an application to find some particular layer; for example,
a parameter can search upward to find the problem configuration of
which it is a member.

Through an object-oriented slight of hand, the instance locking system
introduced by the GObjLck interface layer is expanded into a full
per-user/per-instance access control system. The concept of a “user”
is introduced and the protocols extended to determine not only whether
or not a particular user can gain the requested access now, but whether
or not that access can be granted at all at any time. The concepts of
ownership and other privileges are also introduced in the form of new,
distinct lock levels.

A number of other useful descriptive elements can be applied to any
derivative of the GacBObj interface. For example, digital signatures
can be attached so as to verify the state of an instance at a point in
time. This is expected to be useful in the commercial world for the
protection of intellectual property rights.

. GacPara: This layer declares that the part of the application is,
in fact, a parameter. A parameter is defined as being the principal
information-bearing kind of instance: the input texts, the output num-
bers, what have you. Parameters are held in problem configurations
(groups of parameters defining the specific state of a more generalized
problem being solved) and parameters can participate in dependency
graphs so that a change in one parameter can be correctly reflected in
parameters dependent upon that parameter.

. GacParaArr: This layer declares the parameter to be structured in
the manner of a 1-dimensional array (also sometimes regarded as being
a vector in n-dimensional space); that is, whatever it is, there is a set
of it from which any particular member may be uniquely identified by
a single index value.

. GacParaArrDoub: This layer declares that the array parameter has
a specific type: a double-precision floating point (real) number.



10.

11.

12.

13.

14.

15.

GacParaDimArr: This layer declares that the floating-point num-
bers organized by the array are dimensional in their nature; that is,
the numbers represent measurements in some unit system. That unit
system is encapsulated in an associated description of the instance us-
ing the general mechanism defined back at the GacBObj derivational
layer. This dimensional interface layer turns off the ability to deal with
these numbers in any but a dimensionally-aware way.

GacParaDimArrMAfl: This layer declares that the dimensionality in-
troduced in the previous GacParaDimArr layer is the dimensionality
of mass flow; that is, it is a measurement in terms of mass per unit time.

GacParaGasArrMA1l: This layer declares that the encapsulated mass-
flow numbers are, in fact, the massflow of a gas. This means to any
consumer of the numbers provided that they refer to a gaseous fluid
such as air, not a liquid and certainly not a solid.

GacParaGasArrMAfCr: This layer further defines the encapsulated
gas massflow numbers to be corrected values. (Corrected massflow
applies a correction factor relating ambient total pressure and temper-
ature conditions to sea-level static conditions.)

GacParaGas1DGridMflCr: This layer refines the semantic meaning
to indicate that the encapsulated numbers represent a 1-dimensional
grid of corrected massflow values, presumably obtained through anal-
ysis or, possibly, experimentation. An expectation is now added that
a related parameter will encapsulate the corresponding axial positions
of the grid points for the corrected massflow numbers.

LapPar1DGridMAfCr: Finally, this derivational layer indicates that
this parameter is actually produced by the LAPIN analysis code. Gen-
eral consumers of information need not know or care what LAPIN actu-
ally is, though this could be discovered through analysis of the contain-
ing LapAppl application instance; however, by providing a LAPIN-
specific parameter derivation, the LAPIN wrapper, itself, is able to
recognize its own parameters in case it has encapsulated application-
specific capabilities in them.

As may be seen, this process of derivation has taken us from an amorphous
blob of an instance to something very specific and very clear, something that



a computational fluid dynamics code trying to solve the flow through an inlet
could find, recognize for what it is, and put to use in establishing some initial
condition of the flow.

Another aspect of PIA’s implementation of self-revelation is illustrated by
this diagram. PIA’s self-revelation supports a concept of depth: not only can
it be discovered what an instance is on its surface (here, a LAPIN-generated
1-dimensional grid of corrected massflow results), but the instance’s layers
can be peeled away and its nature all the way to its core discovered. The
process of doing this is called ecdysiastical analysis (from the Greek ekd-
ysis, from ekdyein, to get out of, strip off). By doing such an analysis, some
codes can deal with whole classes of information at the level suitable to the
situation.

As a practical example of ecdysiastical analysis, consider a Graphical User
Interface (GUI) that simply wishes to display numerical values. The code to
do this can cast aside all the specifics of closely defined, semantically-infused
parameter interfacees and deal with a LapPar1DGridMfCr array, as well
as a whole host of other such arrays, as simply being a GacParaDimArr
array of dimensional values. The GUI can request the values in the unit
system currently selected by the user and display the values in a scrolling
edit box, or as an X-Y plot of value versus index, or whatever. The GUI
doesn’t really care if the values are a gas corrected massflow or anything
else: they can be usefully displayed for the user simply as an array of values.

10



5 Slide pst_vgrf_0055 — PIA Application Ar-
chitecdtural Wall Concept

Conceptually, PTA builds a consistent architectural wall between consumers
of applications and information and the actual application and information
resources. This wall is shown in this diagram as the column of blue blocks,
each conceptually connecting on its left in an orderly top-to-bottom, right-
to-left, plug-and-play manner. The job of each blue block is to adapt from
the world of order on the left to the world of individual confusion and chaos
on the right. In this world on the right are the different sorts of information
and application resources: databases of experimental information, archives
of geometry information, application codes capable of turning inputs into
outputs, what have you. It is even possible for there to be no oddly-colored
block at all; a PIA wrapper can be the entirety of an application in and of
itself.

The advantages of the world of order shown on the left are relatively
obvious.

1. Common tools can be used to access all sorts of information. For exam-
ple, a single Graphical User Interface (GUI), perhaps built with features
and abilities appropriate to the discipline of its user, can provide ac-
cess to all manner of applications without ever having been specifically
informed of any such application.

2. Search engines and browsers can be developed that roam over the whole
of offered information without ever needing fore-knowledge of the kinds
of information that will be encountered. (Compare this to current
database access tools that must be built with an explicit knowledge of
the record formats that will be encountered.)

3. Most importantly, applications themselves can search out into this
world of order to interact with other applications without the need
of human direction. For example, a computational fluid dynamics
code charged with solving a posed flow field problem can, on its own
(programmed) initiative, search for a similar solution from whatever
databases of experimental results it can find.

Another point illustrated by the bottom two wrapper blocks of this dia-
gram is that a single wrapper need not be the only access path to an applica-

11



tion or other information resource. For example, “journeyman” and “master”
wrappers can be devised to the same application code: the first providing
heuristics and other assistances to allow the less-knowledgable user useful,
but safe, access to the application while the second allows the assured master
of the situation to turn every control as he sees fit to test the limits of validity
and performance.

12



6 Slide pst_vgrf 0094 — PIA Self-Revealing
Application Architecture

6.1 The Basic Structure

This diagram gives a more technically accurate depiction of the “application”
architecture defined by PIA. An application is represented by a single, coor-
dinating object, labeled PacAppl in this picture, from which three principal
structures emanate.

1. Parameter Configuration Tree: The actual parameters of an appli-
cation are held in a parameter configuration tree (the middle structure
emanating from the PacAppl object and proceeding toward the lower
left corner of the diagram) which organizes them into distinct config-
urations of the problem being studied. The configurations track the
path of investigation: typically, a number of sibling configurations are
studied, a “best” one or two are selected, and investigation proceeds
downward from those selected points.

2. Parameter Identification Tree: The identification and structure of
the parameters of an application is revealed by a parameter identi-
fication tree (the right-most structure emanating from the PacAppl
object).

3. Operation Map: The operations that a particular application can
perform are revealed by an operations map (the left-most structure
emanating from the PacAppl object).

Each of these structures is discussed at greater length in the following
sections.

6.1.1 The Parameter Configuration Tree

As mentioned in the enumeration above, the primary information — the data,
parameters, and the like — of an application is held in an n-ary tree of pa-
rameter configurations. The blocks representing these are labeled PacCfg
in the diagram. Each of these configurations represent a distinct point of
investigation in the encapsulated application. For example, in an experimen-
tal application, each configuration might represent a distinct setting of the

13



experiment at which data was acquired. In the analysis of a design, each
configuration might represent a particular point in the design space that was
evaluated and compared against other configurations of the design.

Each configuration then contains in itself a map of organized parame-
ter objects sorted by the fully-qualified name developed for each parameter
identification. (The development of the fully-qualified name is discussed in
the next section.) These parameters are represented in the diagram by the
block or blocks labeled Par: x/y/z, where the x/y/z portion represents
the fully-qualified name associated with the parameter.

The general intent of the parameter configuration tree is to track the
progress of problem investigation. Generally, it is expected that, at any
particular juncture, a number of possibilities will be studied and that these
various possibilities will be well represented by a set of siblings in the pa-
rameter configuration tree. The expectation continues by suggesting that of
these sibling configurations some few, perhaps as few as one, will be selected
and represent the best choice for advancing the investigation. The parameter
configuration tree will then represent further investigation as descendent (or
offspring) nodes from the selected siblings, again giving rise to a new set of
siblings. As various alternatives prove to be less than fully competitive, their
branches of the overall parameter configuration tree will simply be aban-
doned while more competitive selections will continue further growth until,
ultimately, some final, best configuration is found.

Because this process of investigation is expected, usually, to involve only
small changes from configuration to configuration, the parameter configura-
tion tree introduces the concept of parameter inheritance: a needed param-
eter missing in a particular configuration is considered to be inherited from
the most proximate ancestor of that configuration actually containing that
parameter. In this way, investigations involving merely the tiggling of a few
key parameters can avoid the burden of replicating the entire parameter set
from configuration to configuration.

Naturally, situations exist in which the parameter configuration inheri-
tance protocol is inapproprate. Consider, for example, an experimental data
application in which each configuration is actuallly a complete data sample:
in such a situation it would be inappropriate to inherit experimental read-
ings from other samples when the readings are missing due to instrumen-
tation that has failed during the intervening period. To accommodate such
situations, the parameter inheritance protocol can be turned off on a case
by case basis. The implementation of this option is a part of the parameter

14



identification mechanism that is to be discussed next.

6.1.2 The Parameter Identification Tree

The parameter identification tree actually arose from the concepts of the
parameter configuration tree, specifically the parameter inheritance protocol
in which a parameter missing from a particular parameter configuration node
can be inherited from the most proximate ancestral configuration actually
containing that parameter.

While not always the case, parameters are often structural in nature,
existing as a coordinated unit rather than simply as isolated values. For
example, some computational fluid dynamics codes express their flow fields
as multiple blocks having the same structural form, but different specifics
suited to the nature of the flow in the region the block covers; the same
parameters repeat from block to block, but contain different values. Usually,
these structuralizations are represented as a literal pattern of data: some
key item introduces a new structure of data and then the pattern is followed
again to identify the various parts.

Because PIA’s parameter configuration tree would like only to create the
pieces of data the distinguish one configuration from its ancestral line, this
literal structuralization of data produces a problem: how does one identify
the structural unit a particular item belongs to when all of the structures are
not necessarily present in the configuration? The parameter configuration
contains no key to introduced the beginning of a structure and the patterned
elements of each structure do not exist unless they represent a material dif-
ference from an ancestral configuration.

The parameter identification tree was introduced by PIA to deal with this
difficulty. That structuralization of parameters is encoded into the structure
of the parameter identification tree. Each node of the parameter identifica-
tion tree is given a name, those names being unique among siblings in the
tree. Each terminal node of that tree then identifies its corresponding param-
eter by concatenating the names from terminal node to patriarch to produce
a fully-qualified name by which the parameter is known within any param-
eter configuration. By so doing, the revealed structure of data is flattened
into a single text name and the need to replicate data within a configuration
to preserve structure is eliminated.

As an example of this structuralization, consider again the multi-block
computational fluid dynamics code wrapper. One approach to parameter

15



identification would be to repeat a flow block identication structure once for
each flow block actually involved in the solution of the problem. The name of
the head of each flow block identification subgraph would, of course, have to
be unique while the names of the various parameters within each subgraph
could repeat. Each developed fully-qualified parameter identification name
would be unique at the flow block identification level. If the course of investi-
gation involved only the tiggling of the parameters of a few flow blocks out of
many, those parameters would be clearly identified in their configurations as
pertaining to the flow blocks of interest by their structuralization-flattening
names.

The parameter identification tree is also the mechanism by which the
parameter inheritance protocol of the parameter configuration tree can be
turned off. In simple cases, this may simply be the disabling of the support
mechanism in the particular identification node of the tree. Greater sophis-
tication is, of course, possible. A customized, derivative identification node
can be developed with knowledge of particular situations when such needs
arise.

The identification mechanism implements another feature: the ability
to report whether a particular parameter is, in fact, visible. An invisibile
parameter, even though it might actually exist in a configuration (or that
configuration’s ancestral line), is reported as not existing. This ability may be
used to disable the parameter inheritance protocol when that is appropriate.

To understand the visibility feature, consider a situation in which an
analysis application has an optional model with a number of parameters that
specify the operation of that model and a single parameter that turns that
model on and off. The identification nodes for the specification parameters
may be developed with knowledge of the on/off selection parameter so that
they will report the specification parameters as being invisible when the off
selection is the visible selection. In that way, the specification parameters
will appear not to exist, even though they might exist in (or be inherited by)
a particular configuration that has (or inherits) the off selection parameter.

6.1.3 The Operation Map

The final element of the application architecture displayed in the diagram is
the operation map, illustrated by the boxes labeled PacOp in the diagram.
This is simply a map (sorted by name) of encapsulated operations that the
application is willing to do. Typically, one such operation converts input

16



parameters into output parameters by running the encapsulated application;
however, such an operation is not a requirement and is, indeed, very likely
to be absent in applications that simply serve archives of information. There
may be other operations that such applications may offer. For example, an
experimental database application might have the ability to extend its supply
of offered information by checking with its wrapped experimental facility.

Operations, in a manner similar to parameter identification visibility,
have the ability to report whether the encapsulated activity can currently
operate. For example, a run operation might check to see if the necessary
input parameters exist before attempting the operation. While the encapsu-
lated operation, itself, is expected to check and honor pre-requisites (rather
than simply accepting the invokers assurances), the ability to inquire first
is provided to allow interactive consumers such as Graphical User Interfaces
(GUIs) to gray-out or otherwise indicate that the possibility is not currently
available.

6.2 Operation in Context

The diagram shows some graceful, sweeping curves from both the terminal
nodes of the parameter identification tree and from the nodes of the opera-
tions map. As may have been anticipated, both of these mechanisms operate
in the context of an identified node of the parameter configuration tree. For
example, nodes of the operation map determine whether or not they are
enabled for operation by examining the parameter content of the parame-
ter configuration node provided to them; a run command disables itself if it
does not see the necessary input parameters in the identified configuration.
Similarly, the parameter identification nodes make their visibility and inheri-
tance judgements based upon the information in the configuration identified
to them.

6.3 The Ecdysiastical Sorting Structure

A fourth structure is actually included in the PIA application architec-
ture; however, due to its complication the structure is not represented on
the diagram. This structure is a complete, ecdysiastical sorting of all the
information-bearing objects existing within the application. This object set
is generally considered to begin with all of the parameter objects existing in
all the configurations of the application; however, the set is not limited to

17



only parameter objects. Other objects such as selected kinds of description
objects may also be included in this set.

The ecdysiastical sorting of a set of objects is a comprehensive, layer-
by-layer sorting of those objects, rather than just a sorting by the surface
type of an object. Thus, an object with 15 layers of derivation from the
patriarchial PObject class is included in 15 separate sortings corresponding
to each of those derivational layers. By doing this, objects can be identified
at the derivational level at which it is intended to deal with them, without
regard to whether or not they are exactly of that derivational level, or of
some level derived from that level.

The inclusion of the ecdysiastical sorting in the application architecture
is thought to be important since applications may choose to make all of their
parameters customizations beyond the well-known. For example, an com-
putational fluid mechanics code named Xyz may choose to further derive a
far-field, upstream Mach number parameter into an Xyz, far-field, upstream
Mach number parameter. A sorting of information by its encapsulating ob-
ject’s surface type would be of no use to an outside consumer of information
since it would have no knowledge of anything specific to Xyz, but an ecdysi-
astical sorting would allow that outside consumer to go straight to far-field,
upstream Mach number parameters without concern that in this case they
were Xyz, far-field, upstream Mach number parameters.

18



7 Slide pst_vgrf 0095 — Integrated Applica-
tion Graphs

Having wrapped applications in PTA-compliant wrappers enables the next
step, one of the principal goals of the PIA effort: the integration of many
applications into a multi-fidelity, multi-disciplinary, cooperative whole. This
diagram illustrates this with an (imagined) interconnection of applications
used to analyze the performance of a proposed Rocket-Based, Combined-
Cylce (RBCC) engine intended to propel a single-stage to orbit vehicle.

The flow of information starts with a geometric definition of the engine.
That definition was, in fact, held in a commercial Computer Aided Design
product. (In an actual PIA prototype demonstration effort, this geomet-
ric information was successfully accessed through a PIA-compliant wrapper
that was built upon the Computational Analysis PRogramming Interface
(CAPRI), a vendor-neutral geometric Application Programming Interface
(API) technology developed by Dr. Robert Haimes of the Massachusetts In-
stitute of Technology under a grant from the Computer and Interdisciplinary
Studies Office of the Glenn Research Center.)

From the geometric definition of the engine, information would then flow
to APAS, an airloads panel code, GASP, a more comprehensive computa-
tional fluid dynamics analysis code, and NASTRAN, a well-known, commer-
cial finite element analysis code. As depicted by the diagram, information
generated by these components would flow on to other components until,
ultimately, some sort of answer would come out of the bottom indicating the
merit of the proposed engine design.

This diagram then adds an imagined great recirculation to the top in
which a new configuration of the engine is proposed, a new geometry entered
as a new PIA parameter configuration, and the process restarted.

A key element in making such an integration work is the self-revelation
and semantic infusion technology PIA is built on. In typical integration
technologies, it must be specifically explained by the integrator just exactly
where each integrated application is to find its input, how it must transform
what it finds into what it needs, and where it should put its products so
others can find it. With PIA self-revelation technology, an application is
simply connected to another and, upon an appropriate nudge in the side,
looks for itself to see what it can find and, based on what it finds, decides for
itself what use it can make of that information. The coding for such an effort

19



is, of course, difficult, but the payoff is significant: a wrapper is not coded for
connection only to some other specific wrapper, but instead is coded simply
to look up the line and see if it can find the information it needs.

In actuality, this integrated, comprehensive analysis has not been done
because of the effort involved in developing all of the PIA wrappers to all
of these codes. What has been done, though, is a much simpler effort in
which the actual engine geometry was extracted through a PIA wrapper and
the relevant information transported automatically to a PIA-wrapped flow
stability analysis code not shown on this diagram. This effort demonstrated
the validity of the concepts and assured that, should effort extend to such a
more sophisticated analysis, those basic ideas of information flow would in
fact work.

20



8 Slide pst_vgrf_0133 — Autonomous Solution
Systems

8.1 The Need and Basic Idea

The ability to flexibly integrate applications into comprehensive, multi-fidelity,
multi-disciplinary analyses of large, complex systems opens up a new area
of opportunity, but also a new area of difficulty. Experience with current,
commercial integration technologies suggests that the raw number of details
involved in an integration begins to overwhelm the human being as the num-
ber of elements grows beyond the general range of 15 to 20 applications. Even
with the more flexibile and adaptive integration technologies demonstrated
by PIA prototype efforts, this number may not be significantly greater be-
cause, while relieved of the actual detail effort, the human integrator must
still keep in mind the kinds of information that must be generated and the
general causal flow of that information. This number of 20, 30, or 40 ap-
plications managable through even the enhanced technologies of PTA must
then be compared with industry goals of integrations on the order of 1,000
applications or more. Indeed, Boeing Aircraft Company estimates that it
has a total of some 10,000 active engineering applications which it would like
to see operable in a cohesive, integrated manner.

It is thought that the PIA technology of self-revelation again offers a po-
tential solution to this problem. As objects in general have been devised
to reveal their kind and their characteristics, it is entirely natural to devise
application objects that are willing to reveal the products they produce (in
terms of the kinds of parameter objects generated as the output of the oper-
ation of the application) and the inputs needed to produce those products.
Using this information, it is then proposed that an algorithm can be de-
vised to assemble application graphs that solve a problem posed in terms of
the desire to attain an optimal value of a particular result. With such an
algorithm, the application integration selection process would be converted
from an essentially manual process performed by a person (with the help of
computer-based tools) to an automatic process performed by a machine.

21



8.2 The Essense of the Algorithm: Program Linkage
Editing

The essense of this algorithm has already been in use on a daily basis since
nearly the dawn of electronic computing. It is the program linkage editor,
often known simply as the “linker”. The linker is usually given some initial,
incomlete chunk of programming, usually a program named main. This
program has, in one way or another, two tables: a table of entry point
symbols which it defines and a table of entry point symbols for which it
needs definitions to be made complete. The linker drops this program chunk
into the building program image, notes the entry points that are now defined
somewhere within that chunk, and adds the entry points for which definitions
are needed to the linker’s own internal table of things it is still looking for.
The linker then proceeds on to other bits and pieces of programming supplied
to it: other code modules, specifically-specified libraries, standard libraries,
and the like. As the linker browses through each of these programming
sources, it keeps in mind the list of things it needs. When it finds a chunk
that satisifies a need, it drops that chunk into the program image, moves the
satisfied entry points from the needed table to the defined table, and adds
to its own table of needs anything new that the added chunk needs. This
process continues until the needed definition table is empty. If the linker
comes to the end of its browsing and still has things that it needs definitions
for, it then knows that it is impossible to create the desired program and
prints an error message.

The automatic generation of an application integration graph to solve a
posed problem is seen as being this same fundamental linkage editing algo-
rithm, except that now the symbols are not entry points in program code,
but kinds of parameter objects. For example, let us pose a problem as being a
desire for the best cost per pound to low earth orbit. Obviously, we will need
a CostPerPoundToLEOQO parameter as our final result, so we tell our algo-
rithm to put that in its needed parameter table. The algorithm is then told
to solve that problem. It looks at its table and realizes that it will need an ap-
plication that produces CostPerPoundToLEO as its output, so it searches
the PIA environment for an application claiming (through self-revelation) to
produce that result. Finding such an application, the algorithm

1. Adds the application to the building application graph,
2. Takes CostPerPoundToLEO out of the needed table and puts it in

22



the produced table,
3. Asks the application what it needs to make that particular result, and

4. Puts those parameter needs into the needed table (assuming, of course,
that those inputs are not already available).

This process then continues on, looking for applications that produce the
kinds of information that still reside in the needed parameter table.

The application graph assembly process ends in a manner slightly differ-
ent from the linkage editor. The linkage editor stops when its needed entry
point table is empty: simply, it has found every thing it needs and an explicit
answer to its problem has been found. That should not be the case in applica-
tion graph assembly because it leads to the conclusion that there is only one
answer, not good and bad answers. Instead, the application graph assembly
algorithm should stop when it finds that all its needed inputs are guessable
on a random basis. The technical term for this is that its needed inputs form
an independent design vector. This characteristic is, again, something that
can be identified through the technology of self-revelation: as each needed
input parameter is identified, it is asked whether it is a randomly-guessable
input; if it is, the algorithm would so note and not try to find an application
to satisfy that particular need.

The significance of randomly-guessable inputs (the independent design
vector) is that, given any particular set of such random numbers, some design
is specified and may be analyzed. It may or may not be a good design, but
it is at least a design. Having this, the problem is now reduced to one of
figuring out which set of numbers produces a good, and even a best, design.
This task comes under the broad term of “optimization”, which has already
been, and continues to be, extensively studied.

8.3 After Assembly; The Optimization Process

The topic of optimization of a design given a method of solution is really
an issue subsequent to the autonomous formulation of the solution graph.
Nevertheless, a couple things might be noted at this junction. Because real,
complex systems are likely to have large design vectors, the optimization of a
design is likely to be very challenging. The Langely Research Center, among
other organizations, has been working on technologies to partition such a
large problem into smaller, more managable units that may be optimized

23



quasi-independently in a manner still in concert with the whole. Such tech-
nology will probably be vital. Beyond this, more common technologies will
probably divide the overall optimization process into distinct phases along
the following lines.

1. A statistical characterization phase may be able to sort out the inde-
pendent parameters that have significant effects upon the design. This
will allow less important parameters to be ignored, or at least neglected
until phases of final refinement begin.

2. A genetic manipulation phase may be of use in identifying the region
of a global optimum with relative speed, thus avoiding a lengthy opti-
mization into what is only a local optimum.

3. A true optimization phase would then refine the selected design. Less
significant independent parameters might be re-involved in the design
process during later stages of this process.

4. A final “six-sigma” assessment of the design might further refine the
design, possibly backing away slightly from a truly optimal result to
obtain a more-reliably manufacturable design.

There are, of course, a great many details to real optimization processes.
One in particular is that, in general, design spaces are not unconstrained.
Many parameters will have constraints: usable and ultimate strengths of
materials, minimum spacing of fastners, maximum response rates for con-
trols, all manner of things. Again, it is expected that the technology of
self-revelation will allow these and other issues to be dealt with in a flexible,
adaptive manner. The optimizer will have to ask each of its variables and
each of its applications about those things and arrange itself so as to meet
those specified requirements

24



9 Slide pst_vgrf 0086 — Continuing the Au-
tonomous Assembly of an Application Graph

Under the assumption of a sufficiently rich PIA environment, an application
producing the previously needed result of cost per pound to low earth orbit
is found and becomes the basis of the application graph to be assembled.

The algorithm then inquires of that found application to determine what
parameter it needs as input to produce the cost per pound output and finds
that, in this simple example, the application needs cost and pounds. The
algorithm moves the cost per pound parameter from the needed list to the
found list and places cost and pounds on the needed list. The search for
applications then continues on.

25



10 Slide pst_vgrf_0087 — Further Recursion of
the Autonomous Assembly Algorithm

Since the needed parameter list has not been reduced solely to those param-
eter guessable on a a random basis (that is, to an independent design vector)
the autonomos application graph assembly algorithm searches on for more
applications producing the currently needed parameters, cost and pounds.
Again, it finds such applications and adds them to the building application
graph. The now found parameters cost and pounds are moved to the found
parameter list and the parameters that the newly-found applications need to
operate, fraction, gross, per use, and fized are put on the needed parameter
list. Operations then continue.

26



11 Slide pst_vgrf_ 0088 — Reduction to Appli-
cations Requiring Only Random Inputs

The application graph building process continues until the needed parameter
list kept by the alorithm consists only of inputs that can be guessed on a
random basis. This set would then constitute an independent design vector
suitable for manipulation by an optimization process.

27



12 Slide pst_vgrf 0110 — A Rocket Motor De-
sign Application with Random Inputs

As a very simple illustration of an application requiring inputs that can be
randomly guessed, consider the geometric design of a simple rocket motor.
The essense of a rocket motor is captured in three simple numbers: the cross
sectional areas of the combustion chamber, the throat, and the skirt. Any
three random numbers will give you a basic rocket motor design. Unfortu-
nately, most sets of three random numbers will give you a very bad rocket
motor design, but they will, nevertheless, give you a design. It is up to the
optimization phase to figure out which three random numbers give a best
rocket motor design for the given situation.

One can improve this design application by switching the usage of the
numbers. Instead of simply accepting them as the direct specification of the
three areas, a more sophisticated application might accept the first number
as specifying the cross sectional area of the throat (which is often dealt with
as being the key number in rocket motors) while the two succeeding numbers
would be taken to be the ratio of the two other cross sectional areas, the
combustor and the skirt, to that throat area. If the application were then to
put a stipulation on those two succeeding numbers that each must be greater
than unity, then the design space would be at least limited to traditional
convergent/divergent rocket motor designs.

28



13 Slide pst_vgrf_ 0106 — Applicaiton of Solu-
tion Initialization and Inprovement Tech-
nology

Once an application graph has been built by the autonomous solution system
algorithm (or by manual methods, as the case may be), some other entity
must pick an initial design (in the form of specific values inserted into the
developed independent design vector), determine the merit of that design,
and then vary those values to improve that design. This entity, and activity,
is shown as the block to the right in the diagram indicating the supposed
phases of such an activity:

1. Statistical characterization,
2. Genetic manipulation,
3. Optimization, and

4. Design for Six Sigma.

This overall design improvement activity is considered to be outside the
actual province of PIA development: PIA focuses strictly on the foundational
core of information and application representation and integration technol-
ogy. A design improvement module, like a graphical user interface, a browser,
or a search engine, is considered to be a consumer of PIA resources, not a
PIA resource in and of itself.

29



14 Slide pst_vgrf_0107 — Use of Relevant Ex-
perimental (or Other) Information

While the main use of PIA technology thoughtout the discussion of au-
tonomous solution systems has been for the integration of a developed ap-
plication graph, this does not preclude wrappers within that graph from
reaching out to other PIA resouces not directly participating in the solution
process.

There are some areas of engineering analysis, computational fluid me-
chanics being one well known at the Glenn Research Center, that simply do
not start and operate well from an arbitrary starting point. These analyses,
generally, need some reasonable beginning solution which they can improve
to a significantly more accurate condition. In some cases, it may be that some
pre-cursor application in the application graph will provide that “rough-in”
analysis (indeed, that was one of the original multi-fidelity analysis integra-
tion goals of PIA), but that may not always be the case.

Fortunately, the ability of a PIA application wrapper to use PIA resources
just as any other consumer of PIA-represented information would provides
the opportunity for a remedy. A wrapper able to recognize an insufficient
starting condition would be entirely within the PIA conceptual bounds if it
were programmed to browse through other PIA resouces in search of some
appropriate starting point. Taking up the computational fluid mechanics
example again, such a wrapper could browse through other PIA-wrapped
archives of experimental and analytical flow field results searching for a re-
sult to a similar problem. Since PIA makes the association of all sorts of
information possible, it is expected that the geometry of found flow field
results could be identified and that the seeking wrapper could compare the
geometries of found results to that of its own problem to further inform the
decision process as to whether or not a particular found result represented,
in whatever sense, a good starting point for the problem at hand. Such a
search is the situation depicted in the diagram.

PIA provides further facilities that extend even this situation. It is possi-
ble to devise application wrappers that are aware of a supporting help-desk
facility, presumably staffed by expert humans, for their wrapped application.
In appropriate situations, a wrapper could communicate with that help-desk
to indicate its concerns and await direction. The help-desk might run ex-
periments or independent analyses to provide a starting point and direct

30



the wrapper to them when they become available. As an alternative, the
help-desk might examine the overall situation and advise the wrapper that
the proposed effort is outside the bounds of reason; the wrapper’s response
would probably be to make a notation to that effect and inform the rest
of the application graph that the particular configuration of the problem is
untenable. The possibilities for such a mechanism are limitless.

31



15 Slide pst_vgrf 0098 — Autonomous Solu-
tion System Benefits

The advantages of autonomous solution systems are many. First and fore-
most is that integration beyond the limits of human fuddling is enabled. The
tendency of the human, or even the team of humans, to get confused as too
many facts get tossed into the air at once is replaced by the mindless, nearly-
inerrant plodding of the machine. Linkage editors today flawlessly assemble
programs with tens-of-millions of entry points; integrating a mere 10,000 ap-
plications into a particular solution without muffing a single detail ought to
be like falling off a log by comparison.

To further understand the benefit of this automated extension, consider a
human being attempting to integrate 400 applications, each with an average
of 50 connections to make to other applications of the integration. This would
require the making of 20,000 connections. If a person with the proverbial
99.99% accuracy attempted this feat, there would be an 86% chance that
at least one of those connections would be wrong. This is far too great a
probability to be tolerated in a great many businesses from space flight to
the design of super-tankers.

Akin to this first advantage is that the same problem may be re-solved as
easily when new resources come available. With the advance of knowledge,
new resources of design and analysis are certain to become available. Revising
a massive human effort of integration in order to incorporate a few new
wrinkles might give managers some pause; however, simply double clicking
an icon to see how the solution shakes out today with the new resources in
the system would give few any concern.

Another possibility that arises is that applications might eventually be
validated for the quality of their analysis; a number that indicates how good
their results are. Starting with some arbitrary value for the random inputs
feed into the solution, these accreditation values could be applied to assess
the validity of the final output. Furthermore, automated analysis could be
done of the progress of validity through the course of the solution graph. Ar-
eas of weak ability, in which the validity of the progressing solution did not
increase steadily, could be identified. Indeed, some applications might assess
their validity based upon the actual values of the current problem configura-
tion (for example, a computational fluid dynamics code might correlate its
validity to its achieved convergence) and would be able to contribute to the

32



identification of less valid areas of the design space.

This concept of result validity might then be used to consider alternative
solution strategies. An over-rich analysis environment has the potential of
solving a given problem more than one way. Two approaches to this dilemma
suggest themselves. One approach is to use self-revelation to extract validity
estimates at the time of application graph assembly and select the solution
approach that seems to offer the best results. The alternative approach is
simply to assemble the multiple solution methods, probably as independent
solutions, exercise them all, and see after the fact which gave the best solu-
tion.

Finally, another key benefit of integration technology in general which
is made more complete by autonomous solution system technology is that
discipline expert’s team participation time may be significantly reduced. In-
stead of attending weekly team meetings to go over the current results and
decide what cases will need to be analyzed next, and then spending the rest
of the week turning the crank on those cases, the discipline expert will be
able to leave all of that to the computers in the back room — he or she won’t
even have to sit in on the initial planning sessions thrashing out just how
the problem is going to be solved. This gives the discipline expert more time
to do what he or she is actually paid to do: improve his or her discipline.
While the back-room machines tirelessly turn the crank, the discipline expert
can be developing better analysis modules, embedding more knowledge into
revised PIA wrappers as to how to exploit this code, and the like. The only
time the discipline expert’s attention will be diverted into the mundane task
of actually turning the crank is when the wrapper phones home for advice
on how to proceed in a case outside its built-in experience.

33



16 Slide pst_vgrf 0136 — Autonomous Solu-
tion System Near-Term Demonstration

The next serious research goal to be faced is to demonstrate that an au-
tonomous solution system is possible. While the algorithm, itself, is ex-
pected to be reasonably simple, developing a “sufficiently rich environment”
in which that algorith can operate could be a major effort. The nature of
the “sufficiently rich environment” is that it actual have a complete solu-
tion of the posed problem in it: applications that produce designs, analyses
that consume designs and produce characteristics, and further analyses that
consume characteristics and produce assessments of the merit of the design.
Such an environment for real problems may only be expected after years of
application of PIA to a problem area.

Clearly, a much more confined problem space is needed to demonstrate
the possibility of an autonomous solution system algorithm. The area of
simple mathematical theorems seems to offer the most modest possibilities.
In particular, it is thought that a “sufficiently rich environment” for the
autonomous solution of a quadratic equation might be within reach. That
is, an envirnoment in which a posed quadratic equation of the form

axl+br+c=0

could be solved to produce the quadratic formula,

. —b+ b2 — 4ac
- 2a

In particular, an environment containing only the axioms

exPg + C = expy = exp, = expy, — C

ax’ +br =c¢ = 2az + b= Vdac+ b2

€T Py
E€TPg

ETPLT = €xPy, = T =

should be sufficient for an algorithm to develop the quadratic formula.

34



Having applied the various discovered axioms to develop the quadratic
formula, the algorithm would then publish that result as a new theorem avail-
able within the PIA environment. The demonstration would be completed
by re-posing the quadratic equation problem and observing the algorithm to
proceed directly to its solution by applying the newly-publish quadratic for-
mula theorem, rather than by re-developing that theorem by the application
of the published axioms.

There is a key difference between the algorithm proposed for this problem
and one for the autonomous solution of engineering problems: this algorithm
works in the opposite direction. The proposed engineering algorithm works
backward from a desired result while the mathematical algorithm works for-
ward from a stated problem. Be this as it may, the key element of the
demonstration is that both algorithms can, on an autonomous basis, search
the PIA environment looking for applications that perform needed functions
and produce needed results, arrange and apply those applications to reach a
goal, and then record the results of that action for later consideration as the
need may arise.

At first blush, this demonstration may not seem much of an advance
over the accomplishments of the existing field known as Automatic Theorem
Provers (ATPs); however, there is a small difference. ATPs, in general, must
be supplied with a “conjecture”; that is, a statement of their goal or end
state. The ATP then performs known symbolic manipulations to see if it
can get from A to B. Thus, in our case, the ATP would have to be told that
its invoker believes that, given a quadratic equation as a starting point, the
quadratic formula might be true. But in PIA’s formulation of this algorith, it
is not told an end point; that is, it is not told that the quadratic formula might
be its result. Instead, PTA is merely asked to look around at its resources
and see where it can get to with a quadratic equation as its starting point.
The algorithm not only can find and apply resources, but it can know that
when it reaches an equation of the form

x = {expression independent of x}

it has reached a good end point.

Beyond this small advance lies another: in general, ATPs do not auto-
matically incorporate the results of their activities so as to ease their task
should they encounter the same problem, possibly as a component of a larger
problem, again. In effect, ATPs do not learn and grow smarter. On the other

35



hand, PIA can encapsulate the result of its operation, publish it, recognize
it, and apply it at a later time should that prove to be appropriate.

36



17 Slide pst_vgrf_.0135 — CORBA Migration
Benefits

PIA goals embraced from the beginning large, integrated analysis efforts. As
such it was assumed without question that the final implementation would
be in a net-enabled form that allowed many computers to partcipate in (and
devote their energy to) a coordinated effort. From that standpoint alone,
migration to a standard such as the Common Object Request Broker Archi-
tecture (CORBA) was a given.

One of the aspects of bringing many computers into a cooperating PIA
environment was the nearly-limitless expansion of resources. Beyond the
simple, raw expansion in compute power, a necessary expansion in storage
space also accrues from the re-implementation in CORBA technology. One
of the things learned in the C++ prototyping phase is that PIA creates
objects (and, regrettably, overhead) at a significant rate, a very significant
rate. Unfortunate as this additional overhead may be, it must be remembered
that PIA is enabling capabilities never before realized such as the ability to
produce a ful, auditable record of the development process.

The CORBA re-implementation provides a means, though, to at least
pay this additional expense. CORBA allows objects to be deactivated (tech-
nically, etherealized); when a task arrises for a deactivated object, CORBA
provides a mechanism to re-activate that object (technically, it is incarnated)
and perform the necessary work. PIA uses these basic mechanisms to create,
in effect, a second kind of virtual address space: object activity is tracked
and objects that don’t seem to be doing much are etherialized, their internal
state being stored on secondary storage. When (and if) a method delivery
does come in for an etherealized object, PIA uses the CORBA mechanisms
to re-create that object, restore its internal state, and return the object to
active operation.

The net effect of this use of object etherealization and incarnation is
to extend the PIA data storage space to a practical infinity. Objects (or,
more exactly, their internal state files) may be stored to the limit of the
capacity of all the disk drives that may be attached to all the computers
that may be joined as servers to any PIA collective. The PIA “name space”
allows this set to extend to all the computers that can be joined to the
Internet. Theoretically, all the computers of the entire world could be applied
to hosting and storing information through PIA.

37



The CORBA implementation of PIA includes the concept of a server
cluster: that is, a group of two or more hosts each serving an identical set
of interfaces and each capable of serving any particular object created by
any other member of the cluster. If the creating host is not available at the
time a method is delivered, any other host of a particular collective is still
able to serve the identified object. This significantly enhances reliability and
availability of PIA information.

A PIA server cluster need not be physically co-located: a cluster may be
formed with local and remote machines as long as they have access to the
same persistent storage capabilities. This allows the effect of “hot-siting” to
be created, allowing PIA information to be served even though an entire site
might become unavailable.

The CORBA implementation of PIA also includes greater flexibility in
persistent storage options. When the state of an object is to be saved, options
are implemented to allow that state to be saved in more than one place.
For example, PIA can be configured to save objects states in redundant
local storage servers and redundant remote-site storage servers. PIA also
anticipates the case in which inter-corporate concerns dictate the saving of
object states not on server resources, but on the storage servers of a client
instead.

Another feature of the CORBA re-implementation of PIA is that PIA now
becomes implicitly a multi-user system. CORBA provides no base mecha-
nism for restricting access to a particular user or client machine. Any user or
client that can identify a CORBA-served object can deliver method invoka-
tions to it.

With the ability for multiple accessors provided, PIA then carries forward
into the concept of multiple processes for a single user. In the comprehensive
analysis of multiple configurations of a complex system there is implicit par-
allelism: sibling configurations of a system are in fact independent of each
other, as are sibling analyses of each particular configuration. PIA recognizes
these implicit parallelisms and, as an option, will spawn multiple processes to
carry these independent tasks out. Thus, a single “user” may have PIA car-
rying out hundreds and thousands of processes at a time in the performance
of a complex system analysis.

Also, CORBA holds out the promise of cross-language access to informa-
tion. In theory, a JAVA client could access a C++ server of information.
Actual practice of this theory has been, predictably, a little more difficult
than the theory.

38



A final benefit of the CORBA migration of PIA technology is that it en-
ables a new mode of software delivery. The functionality of an application
can be served through a PIA-compliant, CORBA-served wrapper by a devel-
oper of a software application without the necessity of releasing the actual
application code to the consumer. In addition to securing the code against
piracy, the potential revelation of proprietary techniques, and the like, this
technology may also significantly reduce software maintenance costs since
the developer need only maintain the software copies actually resident on
his own servers. Production of current-release media, shipping media to cus-
tomers, and installation of revised software on customer machines may all be
eliminated. While this does eliminate what may well be a profitable business
unit for the provider of software, it correspondingly eliminates a bothersome
overhead for the customer and allows him to devote more of his resources to
productive effort. Correspondingly, this allows the developer to devote more
of his capital resources to product development and maintenance of the prod-
uct’s competitive position in the market, rather than simply providing office
space, production facilities, and the like, for a software maintenance unit.

39



